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Probability spaces and random variables
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 (E,B) ;

     X     PX  B,
 

∀B ∈ B, PX(B) = P

X−1(B)


= P ({ω ∈  / X(ω) ∈ B})

  (E,B) = (R,BR) ,      X
 FX ,     R  [0; 1]  

FX(x) = P ({ω ∈  / X(ω) ≤ x}) = PX ((−∞;x])
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X(ω)    

 ()
( )

= 35
120

3×()
( )

= 63
120

3×()
( )

= 21
120

1
120

      

           
         A  
          
       PX   
          P 

          
       X     
             
              
 



n
k


= n!

k!(n−k)!      k  

    n      

10
3


= 10!

3!(10−3)!
= 120 .

       A = P()  P (ω) = 1
120

.

   PX        X 
               

{X = k}  k = 0, ..., 3

          P (X = 3) =
1

120
.  {X = 2} ,         

            
P (X = 2) = 3×7

120
.      {X = 1}    

         

7
2


= 21 

      P (X = 1) = 63
120

.  P (X = 0) =
7
3


/

10
3


= 35/120.    

63 + 35 + 21 + 1 = 120 

  {X = k}     {ω ∈    X(ω) = k}.
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          (,A, P ) 
        PX   BX  
   A   BX  A.       
            
           
       

       FX  
  X      

lim
x→−∞

FX(x) = 0  lim
x→+∞

FX(x) = 1

 FX          B1 ⊂ B2 ⇒
P (B1) ≤ P (B2))  x ≤ y,   (−∞; x] ⊆ (−∞; y]   PX ((−∞;x]) ≤
PX ((−∞; y]) .

       FX(x)   
    (−∞; x] ,        (xn, n ∈ N)
      x   Bn = (−∞;xn]
     B = (−∞; x] .     
  

            
       −∞  +∞  n   

             
            
           
          x  

P (X ≥ x) = 1− FX(x) = 0.99

 X            

 X      

V aR(99%) = F−1
X (0.01)

            
     |x| .
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            X
      Y,    
  

∀x ∈ R, FX(x) ≤ FY (x)

 FX  FY     X  Y.
      X  Y      

     X  Y,    
           

P ({X ≥ x}) ≥ P ({Y ≥ x})

    x,       
 x     X    Y.    
 

    

      

          
            X
      Y,    
  

∀x ∈ R, FX(x) ≤ FY (x)

 FX  FY     X  Y.
      X  Y      

     X  Y,    
           

P ({X ≥ x}) ≥ P ({Y ≥ x})

    x,       
 x     X    Y.    
 

    

�e di�erence is your ambition!
The Copenhagen Master of Excel lence programmes are two-year 

master degrees taught in Engl ish, designed for students who want to 

pursue their academic ambit ions in a vibrant and diverse environment.
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The Copenhagen Master of Excel lence programmes cover the areas of 
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Science and Social Sciences. 

Come to Copenhagen -  and aspire!
Learn more at www.come.ku.dk  
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      X       
(xn, n ∈ N)  



n∈N
P ({ω ∈  / X(ω) = xn}) =



n∈N
P (X = xn) = 1

(xn, n ∈ N)      X.
    Y        

fY             
 

FY (x) =

 x

−∞
fY (y)dy

 FY     Y. fY       Y  
  .

      
 +∞

−∞
fY (y)dy = 1

    X           
           X.  
           
 

   B ∈ A        B, 
B   

B(ω) = 1  ω ∈ B

= 0 

              
ω    ω     B.

           
         
           
              
    K = 1000   XT     
    T.          100 ×
{XT≥1000}  {XT ≥ 1000} = {ω ∈  / XT (ω) ≥ 1000} .
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  X        {x1, ..., xn} ,
 xi = xj  i = j     Γ = {B1, ..., Bn}   


X =
n

i=1

xiBi

      Bi = {ω ∈  / X(ω) = xi} , i =
1, 2, ..., n.

 Card() = N  X(ωi) = xi  

X =
N

i=1

xi{ωi}


    Card() < +∞     
     {ωi}     
           
           
  

    

           
       X,     
     Y = g(X)  g    
          
   

•            g  
            
         K   T,  
   YT = g(XT ) = max(XT −K; 0)  XT  
T    
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Probability spaces and random variables

      

•           
           
        Xt  t.     
 [0; t]   

Yt = ln


Xt

1


= ln(Xt) 

          
        

•           
        
          
   

        fX 
fY               
          

   X      fX  g  
     R  R   fY
 Y = g(X)   

fY (x) =
fX(g

−1(x))

|g′ (g−1(x))|  x ∈ Y ()

= 0 

 Y () = {y ∈ R / y = Y (ω)  ω ∈ } .
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Moments of a random variable
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Moments of a random variable

       

            
             
            
          
              
           
      40

21
     

     40
63

      
              
          
    

$40× 1

120
+ $

40

21
× 21

120
+ $

40

63
× 63

120
= $1

           
              
          
               
     

NNE and Pharmaplan have joined forces to create 
NNE Pharmaplan, the world’s leading engineering 
and consultancy company focused entirely on the 
pharma and biotech industries.

Inés Aréizaga Esteva (Spain), 25 years old
Education: Chemical Engineer

NNE Pharmaplan is the world’s leading engineering and consultancy company 
focused entirely on the pharma and biotech industries. We employ more than 
1500 people worldwide and offer global reach and local knowledge along with 
our all-encompassing list of services.                                    nnepharmaplan.com

– You have to be proactive and open-minded as a 
newcomer and make it clear to your colleagues what 
you are able to cope. The pharmaceutical fi eld is new 
to me. But busy as they are, most of my colleagues 
fi nd the time to teach me, and they also trust me. 
Even though it was a bit hard at fi rst, I can feel over 
time that I am beginning to be taken seriously and 
that my contribution is appreciated.
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Moments of a random variable

   

      


    X       
{x1, ..., xn} , xi ∈ R   i.  pi = P (X = xi)  i = 1, ..., n; 
  X   P     
      E(X),   

E(X) =
n

i=1

xipi

  X       fX   FX  
  X   P       
E(X),  

E(X) =

 +∞

−∞
xfX(x)dt =

 +∞

−∞
xdFX(x)

 n   xi          


  X = B  E(X) = E(B) = P (B).
  X

n
i=1 xiBi  Bi = {X = xi} ,   

E(X) = E


n

i=1

xiBi


=

n

i=1

xiE (Bi) =
n

i=1

xipi

       EP   E  
      P.  E  
           
  

           
          
   P,     
 Q.          
 EP  EQ        .

          
          
    X    Y  X+Y  
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   V         

     (,A, P )  X    
    X  E(X) 



XdP,   

    

E(X) =





XdP = sup
Y ∈V

{E(Y ), Y ≤ X}

     E(Y )   Y ∈ V  Y  
         
     X         
       X.    
            
             
              
             

   


XdP,     E(X) 

         x   
  FX            X 
  P.         .

           X    
       X     

X = X+ −X−

 X+ = max(X; 0)  X− = max(−X; 0).    E(X)  
    

  V     
  f       sup∈ f(x)     

    f(x)  x ∈ A.
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Moments of a random variable
   

   X         X
 E(X),        

E(X) = E(X+)− E(X−)

        X+  X− 


         E(X)  
    X       P,   
       P     E(X) 
   E (|X|)    |X| = X+ +X− 

         


   X,Z       A,B
   A 

 X = A ⇒ E(X) = P (A)

 0 ≤ X ≤ Z ⇒ 0 ≤ E(X) ≤ E(Z)

 {X ≥ 0  A ⊂ B} ⇒ E (XA) ≤ E (XB)

∀c ∈ R, E(cX) = cE(X)

 E(X + Z) = E(X) + E(Z)

 |E(X)| ≤ E (|X|)

  X = A       P (A)     
 1 − P (A)         
E(X) = P (A)

     Y = 0     V   
E(X) ≥ E(Y ) = 0.

    Z ≥ X,  

sup
Y ∈V

{E(Y ), Y ≤ X} ≤ sup
Y ∈V

{E(Y ), Y ≤ Z} 

   E(Z) ≥ E(X).

    A ⊂ B  X ≥ 0,  XA ≤ XB  
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Moments of a random variable
       

 X ∈ V            X   
c > 0.   X  cX X+−X−  (cX)+−(cX)−.
       c   (cX)− = −cX+  (cX)+ = −cX−


E(cX) = E

(cX)+


− E


(cX)−



= −cE

X−+ cE


X+


= −c (−E(X)) = cE(X)

             
    X  X+ −X−

 |X| = X++X− E (|X|) = E(X+)+E(X−) ≥ |E(X+)−E(X−)|
      x  y    x + y > x − y 
x+ y > y − x.

     (x1, x2, ..., xn)     X  

    E(X)    x = 1
n

n

i=1

xi.

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/pdf/456101/42


Download free books at BookBooN.com

Probability for Finance

43 

Moments of a random variable

   

     


            
         
          
         
            
           
    X     E [u(X)]   
  u     

            
             
         50 = 1

2
(0 + 100)  

           E(X)  
      X.

      

E [u(X)] ≤ u [E(X)]

 X  u(X)   

         
      

   X       u  
   R  R   u(X)     

E [u(X)] ≤ u [E(X)] 

          
 x1  x2   p  1− p.   

pu(x1) + (1− p)u(x2) ≤ u(px1 + (1− p)x2)

      u(x)     
  (x1, u(x1))  (x2, u(x2)).

  f      (x, y)   λ ∈ [0; 1] , f(λx + (1 − λ)y) ≥
λf(x) + (1− λ)f(y)
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Moments of a random variable

       

    u      
  u           X  

     X    

          
          u′ > 0 
u′′ < 0          
            
        
        

         
           
        
          
         

           
 

    
        2n     

      n        
      

 N          
            
  1/2.  P (N = n) = 1

2n
     

n− 1           
     2n.        
X      

E(X) =
+∞

n=1

2n × P (N = n) =
+∞

n=1

2n × 1

2n
= +∞
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Moments of a random variable
   

            
        

         
          
        

E(ln(X)) =

+∞

n=1

ln(2n)× 1

2n
= ln(2)

+∞

n=1

n

2n

   
+∞

n=1

n

2n
=

+∞

n=1

+∞

k=n

1

2k
= 2

   E(ln(X)) = 2 ln(2) = ln(4)     
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Moments of a random variable

       

    
           
           X. 
           
           
            
            
         

  

         X, 
  2(X)        

2(X) = E(X2)

 2(X)  X   

   X       
 X,  V (X)  σ2(X)   

V (X) = σ2(X) = E

(X − E(X))2



V (X)           Y =
X − E(X),   V (X) = 2(Y ). Y      
 E(Y ) = 0

   X     

V (X) = E

(X − E(X))2


= E(X2)−E(X)2 



E

(X − E(X))2


= E


X2 − 2XE(X) + E(X)2




= E

X2

− 2E [XE(X)] + E(X)2 

= E(X2)− 2E(X)2 + E(X)2 

= E(X2)− E(X)2 

 σ      σ        
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   card() =  P (ω) = 0.25   ω,  X 


X =




2
3
−1
0




E(X) = 1      Y = X − E(X) 
 

Y =




1
2
−2
−1




   X  Y     

V (X) = V (Y ) = 0, 25×

12 + 22 + (−2)2 + (−1)2


= 2.5

          
 

V (X) = V (X + c) 

    c.

     (x1, x2, ...., xn)     X  
           

s2 =
1

n− 1

n

i=1

(xi − x)2 

  n−1   n       
 X         x.

   X       
  X,  σ(X)      V (X)

σ(X) =

V (X)
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Moments of a random variable
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Moments of a random variable
     

      n     X, 
 n(X)        

n(X) = E(Xn)

   X         
 3.    X,  Sk(X)   

Sk(X) =
3(X − E(X))

σ(X)3


      (x1, x2, ...., xn)    
X, Sk(X)   

Sk =
n

(n− 1)(n− 2)


xi − x

s

3



       

            
        Sk = −0.73  
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Moments of a random variable
       

        X   

κ(X) =
4(X − E(X))

σ4


       X   

eκ(X) = κ(X)− 3 

     κ = 3.      
     κ(X)     
           κ(X) =
8.93             
            
          
      

         
          
        
         

      
 L0 (,A)          (,A).
           
 

∀ω ∈ , (X + Y ) (ω) = X(ω) + Y (ω)

∀ω ∈ , ∀c ∈ R, (cX)(ω) = cX(ω)

     L0 (,A)        
             
           
            
        
       

           
      P   .  
     P      
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Moments of a random variable
       

     

     n   Rn  x  y,  
         d(x, y)  x  y 
      d     Rn    
 Rn,  

x = y ⇔
n

i=1

(xi − yi)
2 = 0 

  xi = yi  i = 1, ..., n.
          

 [a; b] .         

d(f, g) =

 b

a

|f(x)− g(x)| dx 

            d(f, g) = 0 
f = g  f(x) = 0  [a; b]  g(x) = 0  [a; b[  g(b) = 1. 

   d(f, g) = 0  f  g      
 

      f  g        
              
         R  

fRg  f  g           

R        fRf  fRg ⇔
gRf)   fRg  gRh⇒ fRh)

       d     
    R     
 [a; b] .  f̂  ĝ       
f  g,   d(f̂ , ĝ)          
(f, g)     f̂ × ĝ.

           
     

  d    S     S × S  R    d(x, y) = 0
 x = y  d(x, y) = d(y, x)   d(x, z) ≤ d(x, y) + d(y, z)   
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Moments of a random variable       

     X  Y   (,A, P ) 
 P  P   

P (ω ∈  / X(ω) = Y (ω)) = 1

      X = Y a.s⇔ P (X = Y ) = 1

         

   (,A, P )    A ∈ A  P  
P (A) = 0.

             
     

L1(,A, P )      P    
 (,A, P ).

     R   L1(,A, P ) 

XRY ⇔ X = Y P 

   

   P   P             
    

       

     X  Y   (,A, P ) 
 P  P   

P (ω ∈  / X(ω) = Y (ω)) = 1

      X = Y a.s⇔ P (X = Y ) = 1

         

   (,A, P )    A ∈ A  P  
P (A) = 0.

             
     

L1(,A, P )      P    
 (,A, P ).

     R   L1(,A, P ) 

XRY ⇔ X = Y P 

   

   P   P             
    

Dedicated Analytical Solutions
FOSS
Slangerupgade 69
3400 Hillerød
Tel. +45 70103370

www.foss.dk

The Family owned FOSS group is 

the world leader as supplier of 

dedicated, high-tech analytical 

solutions which measure and 

control the quality and produc-

tion of agricultural, food, phar-

maceutical and chemical produ-

cts. Main activities are initiated 

from Denmark, Sweden and USA 

with headquarters domiciled in 

Hillerød, DK. The products are 

marketed globally by 23 sales 

companies and an extensive net 

of distributors. In line with 

the corevalue to be ‘First’, the 

company intends to expand 

its market position.

Employees at FOSS Analytical A/S are living proof of the company value - First - using 
new inventions to make dedicated solutions for our customers. With sharp minds and 
cross functional teamwork, we constantly strive to develop new unique products - 
Would you like to join our team?

FOSS works diligently with innovation and development as basis for its growth. It is 
reflected in the fact that more than 200 of the 1200 employees in FOSS work with Re-
search & Development in Scandinavia and USA. Engineers at FOSS work in production, 
development and marketing, within a wide range of different fields, i.e. Chemistry, 
Electronics, Mechanics, Software, Optics, Microbiology, Chemometrics.

Sharp Minds - Bright Ideas!

We offer
A challenging job in an international and innovative company that is leading in its field. You will get the 
opportunity to work with the most advanced technology together with highly skilled colleagues. 

Read more about FOSS at www.foss.dk - or go directly to our student site www.foss.dk/sharpminds where 
you can learn more about your possibilities of working together with us on projects, your thesis etc.
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Moments of a random variable
       

   L1(,A, P )
  L1(,A, P )     R    
 L1(,A, P ).     L0(,A, P )    R
     L0(,A).

   L1(,A, P )      L0(,A, P ).

    L1(,A, P )  R+,  X → X1  


X → X1 = E(|X|)
  

    L1  R   X  E(X),  X →
E(X),     

     L1(,A, P )      L0 (,A, P ) 
          

     X → X1    X1 = 0 ⇔ X = 0 P 
      

X + Y 1 ≤ X1 + Y 1
   ω ∈ ,   |X(ω) + Y (ω)| ≤ |X(ω)|+ |Y (ω)| , 

E(|X + Y |) ≤ E(|X|) + E(|Y |)

       αX1 = |α| X1    
  

          
 

        
              
           

  L         
       S     S  R,  . 
 x = 0     x = 0
 ∀x ∈ S,∀c ∈ R, cx = |c| x
 ∀(x, y) ∈ S × S, x+ y ≤ x+ y



Download free books at BookBooN.com

Probability for Finance

54 

Moments of a random variable
       

          
               
            
          
              


           
      L1(,A, P ))       
d1(X, Y ) = X − Y 1 , L1(,A, P )         
       d1   L1 
   

       (Xn, n ∈ N∗)  
L1    X ∈ L1    

lim
n→+∞

E (|Xn −X|) = 0

   Xn
L→ X.

  L1        
        Rn 
   L1.           
          
       

   L2(,A, P )
  L2(,A, P )       
  L2(,A, P )        
     L2(,A, P )    


   L2(,A, P )      L1(,A, P )

  X  Y     L2(,A, P )    XY  
L1(,A, P ).
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Moments of a random variable
       

       
      
         

      

E(XY )2 ≤ E(X2)E(Y 2) 

 Z = X + tY  t ∈ R 

E

Z2


= E

X2 + 2tXY + t2Y 2


≥ 0

= E

X2

+ 2tE (XY ) + t2E


Y 2


          t.      
      ∆′        ∆′

  
∆′ = E (XY )2 − E


X2

E

Y 2


            X 
Y   L2.            XY 


         L2.

�������	
���

������������
����������
���������	
	����
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Moments of a random variable
       

     L2×L2  R   ., .  


(X, Y )→ X, Y  = E(XY ) 

     L2.
     

X2 =

X,X =


E(X2) 

    d2    d2(X, Y ) = X − Y 2 .

   ., .    X,X = E(X2) > 0  X 
 P           
 

      L1,       L2  
L2     

    (Xn, n ∈ N∗)   L2    X ∈ L2

    
lim

n→+∞
E

(Xn −X)2


= 0

L2             
           
  L2          Rn, 
         L2.    
     

   

    R2,    f : R2 → R   

∀x ∈ R2, f(x) = a1x1 + a2x2 

 a1  a2     x′ = (x1, x2).     
(a1, a2)    f.    a′ = (a1, a2)  
     x ∈ R2  f(x)      

   H            
         H      
   H  
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Moments of a random variable
       

  a  x.         f 
R2  R      a ∈ R2.     
          
 L2(,A, P ).
   f       L2  R 
 Yf ∈ L2     X ∈ L2

f(X) = X, Yf  = E(XYf )

  X         f(X)  
       X → f(X)    
         Card() = N  
        Yf  

f(X) = X, Yf  = E(XYf ) =
N

i=1

X(ωi)Yf(ωi)P (ωi) 

     X = ei = {ωi},   
  ωi.

f(ei) = ei, Yf = P (ωi)Yf (ωi) 

f(ei)                
       ωi.         
P (ωi)  Yf (ωi).   Yf(ωi)       
       f(ei)     
        Yf (ωi)    
    Yf(ωi)         
      

 Yf(ωi)       
   ωi      X,     
     

X =
N

i=1

xiei

 X(ωi) = xi.   

f(X) = X, Yf =
N

i=1

xif(ei) =
N

i=1

xiYf(ωi)P (ωi) 

   R,        x  y   
< x, y >=





xy.
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Moments of a random variable
       

  

     L2      
        x  R2     C ⊂
R2.    C     z     C   
 x.    z      x  C.  
 y     y.         
x−z  y−z    90◦  270◦.       
            
        

< x− z, y − z > ≤ 0 

          
    C          C   
z)

  A       
∀λ ∈ [0; 1] ,∀(x, y) ∈ A×A, λx+ (1− λ)y ∈ A.
 R,      x  y    < x, y > / x . y .

       

  

     L2      
        x  R2     C ⊂
R2.    C     z     C   
 x.    z      x  C.  
 y     y.         
x−z  y−z    90◦  270◦.       
            
        

< x− z, y − z > ≤ 0 

          
    C          C   
z)

  A       
∀λ ∈ [0; 1] ,∀(x, y) ∈ A×A, λx+ (1− λ)y ∈ A.
 R,      x  y    < x, y > / x . y .

2009
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Moments of a random variable       

     R2

          
   

   C       L2  X ∈ L2.
  Z ∈ C  

X − Z, Y − Z  0   Y ∈ C

Z      X  C.      
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Moments of a random variable
       

          
  

   X  Y      L2(,A, P )
   X  Y,  Cov(X,Y )   σXY ) 
 

cov(X, Y ) = E [(X − E(X)) (Y − E(Y ))]

   X  Y          

 X(ω) Y (ω)
ω1  
ω2  
ω3  
ω4  

    X  Y

         E(X) = E(Y ) = 2. 
       

 X(ω)− E(X) Y (ω)− E(Y )
ω1  
ω2  
ω3  
ω4  

      

      

cov(X, Y ) =
1

4
(−1× 1 + (−2)× (−1) + 1× (−1) + 2× 1) = 0.5

         
 P          
  X  Y.       
   a, b, c, d        
   X, Y, Z,W  

Cov(aX+bY, cZ+dW ) = ac×σXZ+ad×σXW+bc×σY Z+bd×σYW 

     Cov(aX, Y ) = aCov(X, Y ).
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Moments of a random variable
       

       

V (X + Y ) = V (X) + V (Y ) + 2Cov (X, Y )

 Cov (X,X) = V (X).

   Cov (X,Y )        
X  Y.             
           
          
   

   X  Y     L2;  
  X  Y    ρXY ,   

ρXY =
Cov(X,Y )

σ(X)σ(Y )

 σ(X)  σ(Y )      X  Y.

ρXY     Cov( X
σ(X)

, Y
σ(Y )

),      

             
    X  Y     


ρXY =
X, Y 

X2 Y 2
 ρXY             
 X  Y.             
        
             
          
            
   

       

σ(X) =


1

4
((−1)2 + (−2)2 + (1)2 + (2)2) =

√
2.5 = 1.58

σ(Y ) =


1

4
((1)2 + (−1)2 + (−1)2 + (1)2) = 1

ρXY =
0.5

1.58
= 0.316
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Moments of a random variable
       

           
  X  Y         
           ρ 
    

  X  Z      L2  a, b, c, d
  

Cov(aX + b, cZ + d) = ac× Cov(X,Z)

ρaX+b,cZ+d = sign(ac)× ρXZ

           Y
W            
σ(aX + b) = |a| σ(X)  σ(cY + d) = |c| σ(Y )

          
 

what‘s missing in this equation?
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Moments of a random variable
  

     X  Y  L2    
     

            
          
 

    


 

              
          
          
       

          
            X1 
      X1       
           X0 = 90   
  

E (X1) =
1

2
[0 + 200] = 100 

            
           
     

X0 =
E (X1)

1 +Riskpremium
= 90 

           
  X0           
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Moments of a random variable
       

           
 Q   P   

X0 = EQ(X1) 

           
     = {ω1, ω2} , X1(ω1) = 200  X1(ω2) = 0.

 Q   

Q(ω1) = q1 = 0.45

Q(ω2) = q2 = 1− q1 = 0.55

         EQ (X1) = 90 = X0. 
 Q            
    

q1 × 200 + q2 × 0 = 90 

q1 + q2 = 1 

           
            
 Q          
           
    

         
              


X1(ω1) = 200 X1(ω2) = 100 X0 = 130 

Y1(ω1) = 150 Y1(ω2) = 110 Y0 = 120 

      Q   X0 = EQ(X1).    

130 = 200Q(ω1) + 100 (1−Q (ω1))

   Q(ω1) = 0.3.

     Q′   Y0 = EQ′(Y1).   
 

150Q′(ω1) + 110 (1−Q′ (ω1)) = 120
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Moments of a random variable
  

    Q′(ω1) = 0.25.
Q  Q′          

            
     

            
             
             
           


     Q  Q′       
    (X0, Y0)      


      θ  

θX


200
100


+ θY


150
110


+ θZ


1
1


=


0
0



 θZ             
             
            
              


 θX = −2; θY = 5; θZ = −350   

−2

200
100


+ 5


150
110


− 350


1
1


=


0
0



        −2× 130 + 5× 120− 350 = −10
           

              
  (X0, Y0)       

         X1    
  Y1,   X0     Y0      
        −2X0+5Y0 = 350.    
             
           Y1 
    Y0 = 122.
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Moments of a random variable
       

    Q”    

122 = 150Q”(ω1) + 110 (1−Q”(ω1))

 Q”(ω1) =
12
40

= 0.3.

        Q”    
 Q          
            
        Q   
             
       

          r    
         1

1+r
,      X1 



X0 =
1

1 + r
EQ(X1) 
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Moments of a random variable
  

           
            
            
         Q  
   

   

            
          
      ω     
     ω        
       {ω} 

        ω1  
A1

1,           P (ω1) > 0  
 A1

0           P (ω1),
          A1

0 = EQ (A1
1) ,

   EQ (A1
1) = Q(ω1).    

             
  P        Q. 
            
            


     

      Q     
   P 

∀B ∈ A, P (B) = 0⇒ Q(B) = 0

   Q << P.

    P  Q   

∀B ∈ A, P (B) = 0⇔ Q(B) = 0

     Q << P  P << Q.
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Moments of a random variable
       

  Q << P         A
 φ  

∀B ∈ A, Q(B) =



B

φdP

      P (B) = 0 ⇒ Q(B) = 0   
   φ,           
  Q(B) =


B
φdP,     φ = dQ

dP
   

  φ        Q
   P.   P  Q   dQ

dP
 dP

dQ
 

dQ

dP
= 1/

dP

dQ

   P  Q      (,A)
 φ = dQ

dP
.     

EQ (X1) = E (φX1)

        
X1 EQ (X1)     X1.        
 P     φX1     E (φX1) = φ,X1
         L2 (,A, P ) . φ  
          

    Card() = N  A = P ()  P (ω) > 0  
ω          

Q({ω}) =


{ω}
φdP = φ(ω)P (ω)

φ    

φ(ω) =
Q(ω)

P (ω)

      φ       
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Moments of a random variable

   

  

 

             
            
      

   n       
  (,A, P )     (Rn,BRn) .    X =
(X1, ...., Xn)

′   Xi    

           
        

          


   

  

 

             
            
      

   n       
  (,A, P )     (Rn,BRn) .    X =
(X1, ...., Xn)

′   Xi    
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Moments of a random variable
       

        X = (X1, ...., Xn)
′   

FX  Rn  [0; 1]  

FX(x) = P (∩ni=1 {Xi ≤ xi})

 x ∈ Rn    (x1, x2.., xn)
′ .

   Xi         X  
  fX  Rn  R  

FX(x) =

 x

−∞

 x

−∞
...

 xn

−∞
fX(x)dx1...dxn

          
            
        E(X)   
    Xi  X      


X =




V (X1) ... Cov(X1, Xj) Cov(X1, Xn)

Cov(Xj ,X1) V (Xj)
Cov(Xn, X1) V (Xn)




      X   

X =




σ2
1 ... σ1j σ1n

σj1 σ2
j

σn1 σ2
n




         
         
  

   X    n 
  U,W   n   Rn.

 E(U ′X) = U ′E(X)

E (U ′X,W ′X) = U ′E(XX ′)W

V (U ′X) = U ′XU

CoV (U ′X,W ′X) = U ′XW
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Moments of a random variable
   

          U ′X =n
i=1 UiXi      V (U ′X)     X   (n, n)

  XX ′   n× n   E(XX ′)    n× n 
   E(XiXj)          

          
 

    

     n   X    
  U ∈ Rn          n
      U,  R,    

R = U ′X =
n

i=1

UiXi

           
 

E(R) = U ′E(X)

V (R) = U ′XU

  E(X)          
             
    

 U        

n

i=1

Ui = 1

    U ′ =1       Rn  
    

         
            e.
X             
           
          

 (n, n)  M        ∀x ∈ R, x = 0⇔ x′Mx > 0.
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Moments of a random variable
       

     

min
1

2
U ′XU

  

U ′E(X) = e

U ′ =1

  1
2
         

            

    

L (U, λ, ) =
1

2
U ′XU + λ (e− U ′E(X)) +  (1− U ′)

        X =   E(X) =
       

∂L
∂U

= U − λ− = 

∂L
∂λ

= e− U ′ = 

∂L
∂

= 1− U ′ = 

       

U = λ−1+−1

      

e = λ′−1+′−1

1 = λ′−1+′−1

     

U =
1

D


(eC − A)−1+(b− eA)−1





A = ′−1

B = ′−1

C = −1

D = BC − A2

          x →
√
x′−1x

    Rn      x, y = x′−1y. 
    D   
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Usual probability distributions in financial models

 

  
  

         
          
            
             
          
               


            
         
          
        
          
      χ2,  t   
       

  

  

  

          


     X    
 p  X        p  1− p.
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Usual probability distributions in financial models

     

     B ∈ A  P (B) = p,     B
      p.    

B ∼ B(p) 

            
      X   a  b (a > b) 
 p  1− p,   Y = 1

a−b(X − b)     
  p  1− p. Y   B(p).      
           
              
           ln(u)
 ln(d) u  up  d  down).       
S0,     S1,     uS0  dS0. 
  

ln(S1) = ln(S0) +X

 X       ln(u)  ln(d).  
            
    

           
            
         B = {SPT ≥ K} 
SPT               T
 K             
           
         P (B).

  

   X ∼ B(p),  E(X) = p  σ2(X) = p(1− p)

     X      
 p,   E(X)    

E(X) = p× 1 + (1− p)× 0 = p

   X,   σ2(X)       
  

σ2(X) = E(X2)− E(X)2 = p− p2 = p(1− p)

             X = X.



Download free books at BookBooN.com

Probability for Finance

75 

Usual probability distributions in financial models
   

       Y    y1  y2
  p  (1− p).   

σ2(Y ) = p(1− p)(y1 − y2)
2 

      X = 1
y−y (Y − y2)  B(p) 

Y = (y1 − y2)X + y2    

E(Y ) = (y1 − y2)E(X) + y2 = py1 + (1− p)y2 

σ2(Y ) = (y1 − y2)
2σ2(X) = p(1− p)(y1 − y2)

2 

            
      Y       
  y1 = ln(u)  y2 = ln(d).      
 

σ2(Y ) = p(1− p) ln
u
d

2
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Usual probability distributions in financial models

     

  

  

           
          
        
           
          
   u  d       
          
  

    X      
 n  p  X       n   
Xi, i = 1, ..., n,     B(p).   

P (X = k) =


n

k


pk(1− p)n−k



n
k


= n!

k!(n−k)!       k   n.
  X   B(n, p).

           
         
           S 
  St   t  ,  (t+ 1)   


St+1 = St ×Xt+1

 Xt+1   u  d   p  1−p.  
Xt    St      

St = S0 ×
t

s=1

Xs

    

ln


St
S0


=

t

s=1

ln(Xs)

          s = 0  s = t 
         t   
  ln(u)  ln(d)   p  1− p.
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Usual probability distributions in financial models
   

    ln(St)  B(n, p)   

P (ln(St) = ln(S0) + k × u) =


n

k


pk(1− p)t−k



n
k


         

 k     t− k  

  

         
      

   X ∼ B(n, p)  E(X) = np  σ2(X) = np(1− p)

    B(n, p)       n 
      B(p)).

     X ∼ B(n, p)

E(X) = np  σ2(X) = np(1− p)

      n   
      

        
    t    

E


ln


St
S0


= t (p ln (u) + (1− p) ln(d))

σ2


ln


St
S0


= tp(1− p) ln

u
d

2

          
             
            
           
        St−St

St
.

     



Download free books at BookBooN.com

Probability for Finance

78 

Usual probability distributions in financial models
     

  



           
             
   

    X      
 λ  X        

∀k ∈ N, P (X = k)= exp(−λ)λ
k

k!

   X ∼ P(λ).

      P(2).      
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Usual probability distributions in financial models
   

    P(2)

  

   X ∼ P(λ)  E(X) = λ  σ2(X) = λ

          
        ex =

+∞
k=0

xk

k!
.

E(X) =
+∞

k=0

kP (X = k) =
+∞

k=0

k exp(−λ)λ
k

k!
= exp(−λ)

+∞

k=1

k
λk

k!

= λ exp(−λ)
+∞

k=1

λk−1

(k − 1)!
= λ exp(−λ)

+∞

k=0

λk

k!
= λ exp(−λ) exp(λ) = λ

           

σ2(X) = E(X2)− E(X)2 = exp(−λ)
+∞

k=0

k2λ
k

k!
− λ2 
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+∞

k=0

k2λ
k

k!
=

+∞

k=1

k2λ
k

k!
= λ

+∞

k=1

k
λk−1

(k − 1)!

= λ
+∞

k=1

(k − 1)
λk−1

(k − 1)!
+ λ

+∞

k=1

λk−1

(k − 1)!

= λ2
+∞

k=0

λk

k!
+ λ

+∞

k=0

λk

k!

=

λ2 + λ


exp(λ)

      σ2(X) = λ.

   P(λ)        
             
 

          
  B(n, p)  n    p      
             
              
             
       n     
  p           
        np    np(1− p)
         np(1− p) ≃ np
 p          
            
    λ = np.

          
           P(λ),   
            
         
     



Download free books at BookBooN.com

Probability for Finance

81 

Usual probability distributions in financial models

   

  

  



  X        [a; b] ,
a < b,    fX   

fX(x) =


1

b−a  x ∈ [a; b]

0 

   X ∼ U([a; b]).

  FX)  X      

FX(x) =





x−a
b−a  x ∈ [a; b]
0  x < a
1  x > b

           
[0; 1] .

         [c; d]  
[a; b]

PX ([c; d]) = PX (]c; d]) =
d− c

b− a
= FX(d)− FX(c)

           
   [a; b]         
          
         a  b.

  

   X ∼ U([a; b])  E(X) = b+a
2

 σ2(X) = (b−a)
12

  X      [a; b] ,    X 
 

E(X) =

 +∞

−∞
xfX(x)dx =

1

b− a

 b

a

xdx =
1

b− a


x2

2

b

a

=
1

2

(b2 − a2)

b− a
=

b+ a

2
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        [0; 1]

        

σ2(X) =

 +∞

−∞
x2fX(x)dx−


b+ a

2

2

=
1

b− a


x3

3

b

a

−

b+ a

2

2

=
1

3

(b3 − a3)

b− a
− 1

4
(a2 + 2ab+ b2)

=
1

3
(a2 + ab+ b2)− 1

4
(a2 + 2ab+ b2)

=
(b− a)2

12
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  X       m 
σ   X ∼ N (m,σ))    fX   

fX(x) =
1

σ
√
2π

exp


−1

2


x−m

σ

2


fX            
      x = m      
     2/3       
    [m− σ;m+ σ]         
[m− 2σ;m+ 2σ] .

         N (0, 1) 
    

    N (0, 1)

         
            χ2 ,
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Usual probability distributions in financial models
   

  

   X ∼ N (m,σ2), E(X) = m  σ2(X) = σ2

          

E(X) =
1

σ
√
2π

 +∞

−∞
x exp


−1

2


x−m

σ

2

dx

 y = x−m
σ
,   

E(X) =
1√
2π

 +∞

−∞
(σy +m) exp


−1

2
y2


dy

=
σ√
2π

 +∞

−∞
y exp


−1

2
y2


dy +

m√
2π

 +∞

−∞
exp


−1

2
y2


dy

=


− σ√

2π
exp


−1

2
y2

+∞

−∞
+m = m

 E(X) = m.        exp

−1

2
y2


       
   y = x−m

σ
      

σ2(X) =
1√
2π

 +∞

−∞
(σy +m)2 exp


−1

2
y2


dy −m2

=
σ2

√
2π

 +∞

−∞
y2 exp


−1

2
y2


dx+

2mσ√
2π

 +∞

−∞
y exp


−1

2
y2


dx

         0      
    2mσ) ;       

σ2

√
2π

 +∞

−∞
y × y exp


−1

2
y2


dx

=
σ2

√
2π


y exp


−1

2
y2

+∞

−∞
−
 +∞

−∞
− exp


−1

2
y2


dx



= σ2


1√
2π

y exp


−1

2
y2

+∞

−∞
+

1√
2π

 +∞

−∞
exp


−1

2
y2


dx



             
1.    σ2(X) = σ2.



Download free books at BookBooN.com

Probability for Finance

86 

Usual probability distributions in financial models
     

            
          
           
           
          
  

  



         0  t  
 r = ln


St
S


 St   t  (t > 0).  

           
 St = S0e

r          
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that will stimulate your mind and 
enhance your career prospects. You’ll 
spend time with other students, top 
Accenture Consultants and special 
guests. An inspirational two days 

packed with intellectual challenges 
and activities designed to let you 
discover what it really means to be a 
high performer in business. We can’t 
tell you everything about Boot Camp, 
but expect a fast-paced, exhilarating 

and intense learning experience.  
It could be your toughest test yet, 
which is exactly what will make it 
your biggest opportunity.

Find out more and apply online.

Choose Accenture for a career where the variety of opportunities and challenges allows you to make a 
difference every day. A place where you can develop your potential and grow professionally, working 
alongside talented colleagues. The only place where you can learn from our unrivalled experience, while 
helping our global clients achieve high performance. If this is your idea of a typical working day, then 
Accenture is the place to be.

Turning a challenge into a learning curve.
Just another day at the office for a high performer.

Accenture Boot Camp – your toughest test yet
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  X       m
 σ2  ln(X) ∼ N (m,σ2).    X   

fX(x) =





1
xσ

√
2π

exp


−1

2


ln(x)−m

σ

2


 x > 0

0 

  X ∼ LN(m,σ2).

          
 m = 0  σ = 1
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   X ∼ LN(m,σ2), E(X) = exp

m+ σ

2


 σ2(X) =

exp (2m+ σ2) (exp(σ2)− 1))

      

E(X) =
1

σ
√
2π

 +∞

0

exp


−1

2


ln(x)−m

σ

2

dx

  y = ln(x),     

E(X) =
1

σ
√
2π

 +∞

−∞
exp(y) exp


−1

2


y −m

σ

2

dy

       

E(X) =
1

σ
√
2π

 +∞

−∞
exp


−1

2


(y − (m+ σ2))2

σ2


exp


m+

σ2

2


dy

= exp


m+

σ2

2



                
    (m+ σ2)   σ2.

       V (X)     E(X2) =
exp (2(m+ σ2))     V (X) = exp (2m+ σ2) (exp(σ2)− 1))

   Y ∼ N (0, 1)  X     

X = exp


m− σ2

2


+ σY



 m  σ    σ > 0. X   1  
        m  σ   
    

     X    K   1  
   max(X −K; 0)    
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    E

(X −K)+


 (x)+ = x  x > 0  (x)+ = 0

  fX    X,  :

E

(X −K)+


=

+∞

0

fX(x)max(x−K; 0)dx =

+∞

K

fX(x)(x−K)dx

=

+∞

K

xfX(x)dx−K

+∞

K

fX(x)dx 

=

+∞

K

xfX(x)dx−KP (X ≥ K) 

=

+∞

K

xfX(x)dx−KP (ln(X) ≥ ln(K)) 

     X 

P (ln(X) ≥ ln(K)) = P


m− σ2

2


+ σY ≥ ln(K)




= P


Y ≥

ln(K)−

m− σ

2



σ


 

   N(x)         

P (X ≥ K) = 1−N



ln(K)−


m− σ

2



σ


 

= N



− ln(K) +


m− σ

2



σ


 

             


            
  

+∞

K

xfX(x)dx = emN



− ln(K) +


m+ σ

2



σ
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      m = 3%  σ = 20%.  
             
               
     [900; 1000] .         
 [1000; 1100]?       

it’s an interesting world

Get under the skin of it.
Graduate opportunities
Cheltenham | £24,945 + benefits

One of the UK’s intelligence services, GCHQ’s role is two-fold: 
to gather and analyse intelligence which helps shape Britain’s
response to global events, and, to provide technical advice for the
protection of Government communication and information systems.
In doing so, our specialists – in IT, internet, engineering, languages,
information assurance, mathematics and intelligence – get well
beneath the surface of global affairs. If you thought the world was 
an interesting place, you really ought to explore our world of work.

www.careersinbritishintelligence.co.uk
Applicants must be British citizens. GCHQ values diversity and welcomes applicants from
all sections of the community. We want our workforce to reflect the diversity of our work.
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 χ2   t    

  χ2 

     Y   χ2   n 
    Y    

Y =
n

i=1

X2
i 

  Xi        ∀i,
Xi ∼ N (0, 1).

            
  σ2      (X1, ....Xn)   
     (m,σ2

0),   Y 


Y =
n

j=1


Xi −m

σ0

2



  χ2   n       

σ2
0Y

n
=

1

n

n

j=1

(Xi −m)2 

           

  m      X = 1
n

n

i=1

Xi,  

Y ∗,    m  X      χ2 

 n− 1       1
n−1

n

j=1


Xi −X

2
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 χ2       χ2    
            
     

  t 

     Y   −t 
 n     Y   

Y =
Z
X
n



 Z       X   χ2 
 n   
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   n)      n/(n−2)   
   3(n−2)/(n−4).      n > 4.  
 n = 6,            
    

   

          
      F     
      

     Y    
   

Y =
X

n
X

n



 X1 (X2)   χ2   n1 (n2)   

      F (n1, n2)      F (n2, n1) 
        F    
             
        n1  n2   
         
           
             
         F   
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 t           t + 1,
       t.      
        
          
         
            
         

  

  

           
           
(,A, P )   = {ω1, ω2, ω3, ω4} , A = P()  P (ωi) = 0.25  
i = 1, .., 4.    X  Y       
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 X Y
ω1 1 1
ω2 2 1
ω3 3 2
ω4 4 2

    X  Y

  

E(X) =
1

4
(1 + 2 + 3 + 4) = 2.5 

E(Y ) =
1

4
(1 + 1 + 2 + 2) = 1.5 

      Y       X  .

 Y (ω) = 1,    ω    ω1  ω2.   
  {ω1, ω2}         {Y = 1} 
          {Y = 1} .  
       

(P (ωi |{Y = 1}), i = 1, ..., 4) =


1

2
;
1

2
; 0; 0




          X  
     E (X |{Y = 1}) 

E (X |{Y = 1}) =


X(ωi)P (ωi |{Y = 1}) = 1

2
(1 + 2) = 1.5 

    E(X)        {Y = 1} 
       

           
         Y     
    Y.     Y,       
             
   X    1.5.    
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       X  Y   
 (xi, i = 1, ..., n)  (yj, j = 1, ..., p) .

        X 
{Y = yi}      PX|Y (. |yi )   

PX|Y (x |yi ) = P (X = x |Y = yi ) =
P ({X = x} ∩ {Y = yi})

P ({Y = yi})

       P ({Y = yi}) = 0     
        Y. PX|Y (. |yi )  
       X.

Destination MMU
MMU is proud to be one of the most popular universities in the UK. 
Some 34,000 students from all parts of the globe select from its 
curricula of over 1,000 courses and qualifications. 

We are based in the dynamic yet conveniently compact city of Manchester, 
located at the heart of a sophisticated transport network including a major 
international airport on the outskirts. Parts of the campus are acclaimed for 
their architectural style and date back over 150 years, in direct contrast to 
our teaching style which is thoroughly  modern, innovative and 
forward-thinking. 

MMU offers undergraduate and postgraduate courses in 
the following subject areas: 

• Art, Design & Performance 
• Computing, Engineering & Technology 
• Business & Management 
• Science, Environmental Studies & Geography 
• Law, Education & Psychology 
• Food, Hospitality, Tourism & Leisure Studies 
• Humanities & Social Science 

For more details or an application form
please contact MMU International.
email: international@mmu.ac.uk
telephone: +44 (0)161 247 1022
www.mmu.ac.uk/international
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 fXY          ,
fX  fY     X  Y.

    y  fY (y) > 0,    
X  {Y = y}    fX|Y (. |y )   

fX|Y (x |y ) =
fXY (x, y)

fY (y)

   X     fX  B    
 P (B) = 0    X   B   

fX(x |B ) =


fX(x)
P (B)

 x ∈ X(B)

0 


         
        

       

         
          A.

          X 
  x1, ..., xN ,    B  A,    E(X |B ) 
  

E(X |B ) =
N

i=1

xiP ({X = xi} |B )

        X  
fX    B  A,    E(X |B )   

E(X |B ) =
1

P (B)



X(B)

xfX(x)dx =

 +∞

−∞
xfX(x |B )dx
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           {Y = 2}
 

E(X |{Y = 2}) =
N

i=1

xiP ({ωi} |{Y = 2}) 

= 3× P (ω3 |{Y = 2}) + 4× P (ω4 |{Y = 2}) 

=
1

2
(3 + 4) = 3.5 

     P (ω1 |{Y = 2}) = P (ω2 |{Y = 2}) = 0.

            
             
   X       Y. 
    Y,        
             
  

       
 

 

         X, 
 x1, ..., xN ,      Y,   
y1, ..., yM ,   E(X |Y ),      

∀ω ∈ {Y = yj} , E(X |Y )(ω) =
N

i=1

xiP ({X = xi} |{Y = yj}) 

        X  Y  
 

 E(X |Y )
ω1 1.5
ω2 1.5
ω3 3.5
ω4 3.5

     X    Y
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   X  Y     fX  fY  
    fX|Y (x |y )  .   
  X  {Y = y}  

E (X |Y = y ) =

 +∞

−∞
xfX|Y (x |y )dx

      X  Y   
  

∀ω ∈ {Y = y} , E(X |Y )(ω) =

 +∞

−∞
xfX|Y (x |y )dx

      Y     {Y = yj}
    .        E(X |Y )
              Y, 
        Y    
    E(X |Y ).       E(X |Y ) 
BY .         

By 2020, wind could provide one-tenth of our planet’s 
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the 
world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our 
systems for on-line condition monitoring and automatic 
lubrication. We help make it more economical to create 
cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 
industries can boost performance beyond expectations. 

Therefore we need the best employees who can 
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering. 

Visit us at www.skf.com/knowledge
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 (  X ∈ L1(,A, P )),    B  A,   B
  Z, 

∀B ∈ B, E (ZB) = E (XB) 

    

•  Z         Z  Z ′ 
           
        
      E(X |B ).

•        X    
 E(X |B )           B. 
             
 

•       X  B, E(X |B ) = X.

   Card() = , P (ωi) = pi   ωi  B  

B = {∅, {ω1, ω2} , {ω3, ω4} ,}

 B1 = {ω1, ω2} B2 = {ω3, ω4}  X    X = (x1; x2; x3;x4) .
   

p1x1 + p2x2 = p1z1 + p2z2 

p3x3 + p4x4 = p3z3 + p4z4 

 Card  , X              
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    Z   (z1; z2; z3; z4) . 
    B1      B2.  Z  B
        B1   B2.   

z1 = z2

z3 = z4

  

z1 = z2 =
1

p1 + p2
[p1x1 + p2x2] = E (X |B1 )

z3 = z4 =
1

p3 + p4
[p3x3 + p4x4] = E (X |B2 )

        B1 (B2)  
         X  
 B1(B2).

      X   B,  E (X |B )
    X.

    L2 ,A, P )

        
           
     L2 (,A, P ) .         


  

          
       R2,    


d(x, y) =


(x1 − y1)2 + (x2 − y2)

2

 x′ = (x1, x2)  y′ = (y1, y2) .

   x ∈ R2,         z =
(z1, z1)             x. 
  

minz(x1 − z1)
2 + (x2 − z1)

2

         z1 = z2.
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    L2 (,A, P ) 

   z1 = x+x
2

.    z    
  x ∈ R2        

    z − x    z.

< z − x, z >= (z1 − x1)z1 + (z1 − x2)z1 

=
x2 − x1

2
z1 +

x1 − x2

2
z1 = 0 

   R2     

d∗(x, y) =


p(x1 − y1)2 + q (x2 − y2)

2

 p + q = 1, p > 0, q > 0.        
  

      

z1 = px1 + qx2

z1            
    x

       L2

          
       X    
L2 (,A, P ) ,    E(X |B )  B  
     B   L2 (,B, P ) .

   L2 (,A, P )     R4  L2 (,B, P )
 R2           
      E(X |B )      X 
L2 (,B, P ) .    E (X |B )    

minZ∈L,B,P )E

(X − Z)2


= minZ∈L,B,P )d(X,Z)

2 = E

(X − E (X |B ))2



             
  E (X |B )  B   

z1 = z2 

z3 = z4 

           
           P  

PB        B  L,B, P ).      
 P       B.
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E

(X − Z)2


= p1(x1−z1)2+p2(x2−z1)2+p3(x3−z3)2+p4(x4−z3)2 

      z1  z3     
 

∂E

(X − Z)2



∂z1
= −2 [p1(x1 − z1) + p2(x2 − z1)] = 0 

∂E

(X − Z)2



∂z3
= −2 [p3(x3 − z3) + p4(x4 − z3)] = 0 

    

z1 = z2 =
1

p1 + p2
(p1x1 + p2x2) = E (X |B ) (ω1) = E (X |B ) (ω2)

z3 = z4 =
1

p3 + p4
(p3x3 + p4x4) = E (X |B ) (ω3) = E (X |B ) (ω4)

          
           
     

          
      

�e di�erence is your ambition!
The Copenhagen Master of Excel lence programmes are two-year 

master degrees taught in Engl ish, designed for students who want to 

pursue their academic ambit ions in a vibrant and diverse environment.

The University of Copenhagen is ranked as the leading university in 

Scandinavia and one of the leading research inst itutions in Europe.

The Copenhagen Master of Excel lence programmes cover the areas of 

Health Sciences, Humanit ies, Law, Life Sciences, Rel igious Studies, 

Science and Social Sciences. 

Come to Copenhagen -  and aspire!
Learn more at www.come.ku.dk  
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   (X, Y )      L2 (,A, P ) 
B,B′    A  B ⊂ B′

  X    c ∈ R, E (X |B ) = c

 ∀(a, b) ∈ R2, E (aX + bY |B ) = aE (X |B ) + bE (Y |B )

  X ≤ Y, E (X |B ) ≤ E (Y |B )

 E (E (X |B′ ) |B ) = E (X |B )

  X  B E (XY |B ) = X E (Y |B )

  X    B, E (X |B ) = E(X)

               
       

   c     c.      
        B  
    c      L2 (,B, P ) . 
 L2 (,B, P )      L2 (,A, P ) ,     

           


            
        
E (X |B′ )     X  L2 (,B′, P ) . E (E (X |B′ ) |B )
    L2 (,B, P )  E (X |B′ )

        L2 (,B′, P )   
L2 (,B, P )          
 L2 (,B, P ) .         
         B = {∅,} E (X |B ) = E(X)
  E (E (X |B′ )) = E (X)  B′ 

     E (X − E(X) |B ) = 0  E(X)   

      X −E(X)     Y 
L2 (,B, P ) 

E((X − E(X)) Y ) = E (X −E(X))E(Y ) = 0 
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 X−E(X)  Y.           
          
     

    

           
         
          
         
           


     X = (X1, ...., Xn)     

 
n

i=1

aiXi    

 m′ = (E(X1), ..., E(Xn))      X 
   X.   fX  X   

∀x ∈ Rn, f(x) =


1√
2π

n
1

Det(X)
exp


−1

2
(x−m)′−1

X (x−m)




 Det(X)         
  

   X = (X1, ....,Xn)      
m X ;  p < n  Y1 = (X1, ...., Xp)  Y2 = (Xp+1, ...., Xn) .
 X    

X =


Σ11 Σ12

Σ21 Σ22



 Σii      Yi  Σij    
     Yi  Yj  i, j = 1, 2, i = j. 
   Y1   Y2 = y2 ∈ Rn−p   
    

E (Y1 |Y2 = y2 ) = E(Y1) + Σ12Σ
−1
22 (y2 − E(Y2)) 

Y|Y=y = Σ11 − Σ12Σ
−1
22 Σ21
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 p = 1  n = 2

     p = 1  n = 2 

E (X1 |X2 = x2 ) = m1 +
σ12

σ2
2

(y2 −m2)

X|X=x = σ2
1 −

σ2
12

σ2
2

 ρ12          

X|X=x = σ2
1(1− ρ2

12)

           
  x′ = (x1, x2))

fX|X (x1 |x2 ) =
fX(x1, x2)

fX(x2)
=

1

(2π)
√

|Det(X)|
exp


−1

2
(x−m)′−1

X (x−m)


1
σ

√
2π
exp


−1

2


x−m

σ

2


=
σ2√

2π

σ2

1σ
2
2 − σ2

12

exp

−1

2
(x−m)′−1

X (x−m)


exp


−1

2


x−m

σ

2


=
σ2√

2π

σ2

1σ
2
2 − σ2

12

exp


−1

2


(x−m)′−1

X (x−m)−

x2 −m2

σ2

2


     

−1
X =

1

σ2
1σ

2
2 − σ2

12


σ2

2 −σ12

−σ12 σ2
1



 A = (x−m)′−1
X (x−m),  

A =
σ2

2x
2
1 − 2σ2

2x1m1 − 2x1σ12x2 + 2x1σ12m2

σ2
1σ

2
2 − σ2

12

+

σ2
2m

2
1 + 2m1σ12x2 − 2m1σ12m2 + σ2

1x
2
2 − 2σ2

1x2m2 + σ2
1m

2
2

σ2
1σ

2
2 − σ2

12

       

fX(x1, x2)

fX(x2)
=

σ2√
2π

(σ2

1σ
2
2 − σ2

12)
exp


−1

2

(−σ2
2x1 + σ2

2m1 + σ12x2 − σ12m2)
2

σ2
2 (σ

2
1σ

2
2 − σ2

12)
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E (X1 |X2 = x2 ) = m1 +
σ12

σ2
2

(x2 −m2)

X|X=x = σ2
1 −

σ2
12

σ2
2

   g 

g(x1) =
1

σ2
1 − σ

σ

√
2π

exp


−1

2


x1 −m1 − σ

σ
(x2 −m2)


σ2

1 − σ
σ




2


=
σ2√

2π

(σ2

1σ
2
2 − σ2

12)
exp


−1

2

(−σ2
2x1 + σ2

2m1 + σ12x2 − σ12m2)
2

σ2
2 (σ

2
1σ

2
2 − σ2

12)



       g(x1) = fX|X (x1 |x2 ).

    X|X=x = σ2
1(1 − ρ2

12)  X2 = x2

             X1 
           
      X1     
 ρ12           
     

NNE and Pharmaplan have joined forces to create 
NNE Pharmaplan, the world’s leading engineering 
and consultancy company focused entirely on the 
pharma and biotech industries.

Inés Aréizaga Esteva (Spain), 25 years old
Education: Chemical Engineer

NNE Pharmaplan is the world’s leading engineering and consultancy company 
focused entirely on the pharma and biotech industries. We employ more than 
1500 people worldwide and offer global reach and local knowledge along with 
our all-encompassing list of services.                                    nnepharmaplan.com

– You have to be proactive and open-minded as a 
newcomer and make it clear to your colleagues what 
you are able to cope. The pharmaceutical fi eld is new 
to me. But busy as they are, most of my colleagues 
fi nd the time to teach me, and they also trust me. 
Even though it was a bit hard at fi rst, I can feel over 
time that I am beginning to be taken seriously and 
that my contribution is appreciated.

Trust and responsibility  
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           β
           
           
           
   

           
           
              
           
       L1  L2.   
          
            
             
         
 

  

   (Xn, n ∈ N)        X
        (,A, P ) ;

 (Xn, n ∈ N)   X     Xn
P→ X 

  ε > 0
lim

n→+∞
P (|Xn −X| > ε) = 0
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 (Xn, n ∈ N)   X     Xn
a.s→ X 

    0 ⊂   P (0) = 1  

∀ω ∈ 0, lim
n→+∞

Xn(ω) = X(ω)

  PXn PX      Xn X  (Xn, n ∈ N)
  X     Xn

L→ X)    
  f 

lim
n→+∞



R
f(x).dPXn(x) =



R
f(x).dPX(x)

      

           
 

    

          
            
                 
           
              

             
          
          

   
 X          

E(X) =    A > 0     

P (X ≥ A) ≤ 1

A

       A > 1    
           X.  
             
            
        X     
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 X ∈ L2 (,A, P )   E(X) = m  V (X) = σ2;  

B > 0  

P (|X − | ≥ B) ≤ σ2

B2

             
           
             
           
           

P (|X − | ≥ Aσ) ≤ 1

A2

 A      X      

P (X −   −Aσ) ≤ 1

2A2

          A =


1
2×0.01

= 7.0711. 
        A = 2.32, 
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 (Xn, n ∈ N)         

        σ),  
  Zn = 1

n

n
i=1Xi  (Zn, n ∈ N)     

       ε > 0

P (|Zn − | ≥ ε) ≤ σ2

nε2

           
 

         
        

   (Xn, n ∈ N)       
 Xn   X   X     L2)  
    

 limn→+∞E(Xn) = E(X)

 limn→+∞ V (Xn −X) = 0

      
 (Xn, n ∈ N)         

 Zn =
1
n

n
i=1Xi

(Zn, n ∈ N)     

    E(|Xn|) = +∞,   Zn   


          
          
           
            
           
         

            


ri = E(ri) +
K

k=1

βikFk + εi 
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 ri       i, F1, ..., FK   
   βik      i   
  k   εi        
  i.       Cov(Fk, Fj) = 0
 j = k)      Cov(Fk, εi) = 0). 
    Cov(εi, εm) = 0  i = m).

              
             
        N      
    

1

N

N

i=1

ri =
1

N

N

i=1

E(ri) +
1

N

N

i=1

K

k=1

βikFk +
1

N

N

i=1

εi 

=
1

N

N

i=1

E(ri) +
K

k=1


1

N

N

i=1

βik


Fk +

1

N

N

i=1

εi 

           

          1
N

N

i=1

εi    

         

   

           
            
           
           
      

     
 (Xn, n ∈ N)         

 p;   Tn  

Tn =

n
i=1Xi − np
np(1− p)

      

             
         p 
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  n      u  d 
              
        up  
            


   Y =

Y n

1 , ..., Y
n
k(n), n ≥ 1


    

     n,  s2n = V
k(n)

i=1 Y n
i


. Y  

     ε > 0,   U =

Un

1 , ..., U
n
k(n), n ≥ 1



 

Un
i = Y n

i  |Y n
i | ≤ εsn

= 0 

 

lim
n→+∞

V
k(n)

i=1 Y n
i



s2n
= 1

           
          
 

   Y =

Y n

1 , ..., Y
n
k(n), n ≥ 1


    

       

Y n

1 −E (Y n
1 ) , ...., Y

n
k(n) −E


Y n
k(n)


, n ≥ 1



       n ≥ 1,  Zn =
k(n)

i=1 Y n
i 

 E (Zn)→   V (Zn)→ σ2 = 0   Zn    
   Z

          
        u  d 
     u  d       
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